Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide.

نویسندگان

  • J S Beckman
  • T W Beckman
  • J Chen
  • P A Marshall
  • B A Freeman
چکیده

Superoxide dismutase reduces injury in many disease processes, implicating superoxide anion radical (O2-.) as a toxic species in vivo. A critical target of superoxide may be nitric oxide (NO.) produced by endothelium, macrophages, neutrophils, and brain synaptosomes. Superoxide and NO. are known to rapidly react to form the stable peroxynitrite anion (ONOO-). We have shown that peroxynitrite has a pKa of 7.49 +/- 0.06 at 37 degrees C and rapidly decomposes once protonated with a half-life of 1.9 sec at pH 7.4. Peroxynitrite decomposition generates a strong oxidant with reactivity similar to hydroxyl radical, as assessed by the oxidation of deoxyribose or dimethyl sulfoxide. Product yields indicative of hydroxyl radical were 5.1 +/- 0.1% and 24.3 +/- 1.0%, respectively, of added peroxynitrite. Product formation was not affected by the metal chelator diethyltriaminepentaacetic acid, suggesting that iron was not required to catalyze oxidation. In contrast, desferrioxamine was a potent, competitive inhibitor of peroxynitrite-initiated oxidation because of a direct reaction between desferrioxamine and peroxynitrite rather than by iron chelation. We propose that superoxide dismutase may protect vascular tissue stimulated to produce superoxide and NO. under pathological conditions by preventing the formation of peroxynitrite.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissociation of vasospasm and secondary effects of experimental subarachnoid hemorrhage by clazosentan.

BACKGROUND AND PURPOSE Endothelin receptor antagonists such as clazosentan decrease large-artery vasospasm after experimental and clinical subarachnoid hemorrhage. We used clazosentan to gain insight into the pathophysiology of subarachnoid hemorrhage by determining if decreasing vasospasm is associated with alleviation of other secondary complications of subarachnoid hemorrhage such as oxidati...

متن کامل

Reaction of superoxide and nitric oxide with peroxynitrite. Implications for peroxynitrite-mediated oxidation reactions in vivo.

Peroxynitrite (ONOO(-)/ONOOH), the product of the diffusion-limited reaction of nitric oxide (*NO) with superoxide (O(-*)(2)), has been implicated as an important mediator of tissue injury during conditions associated with enhanced *NO and O(-*)(2) production. Although several groups of investigators have demonstrated substantial oxidizing and cytotoxic activities of chemically synthesized pero...

متن کامل

Nephrotoxicity of Isosorbide Dinitrate and Cholestasis in Rat: The Possible Role of Nitric Oxide

Background: Nitric oxide (NO), a major chemical form of endothelium-derived relaxing factor and an important regulator of vascular tone, is released by endothelial cells. The role of NO is not restricted to the vascular system, and it participates in the regulation of renal hemodynamics and renal excretory function. There are increasing evidences indicating that the elevated levels of NO play a...

متن کامل

Nitric oxide modulates superoxide release and peroxynitrite formation in human blood vessels.

Nitric oxide and superoxide have important roles as vascular signaling molecules. Nitric oxide (NO) reacts rapidly with superoxide, producing peroxynitrite. The relative balance between these radicals has important implications for vascular pathophysiology in hypertension and other vascular disease states. However, the relationships between superoxide, NO, and peroxynitrite formation in human b...

متن کامل

Dipyridamole inhibits hydroxylamine augmented nitric oxide (NO) production by activated polymorphonuclear neutrophils through an adenosine-independent mechanism.

Polymorphonuclear neutrophils (PMN) are thought to play a role in reperfusion injury and ischemia. These effects are partly mediated by toxic oxygen species (superoxide anion, hydrogen peroxide and hydroxyl radical) acting at the level of the endothelium. It was demonstrated recently that the superoxide anion reacts with nitric oxide (NO) and that interaction leads to the generation of highly t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 87 4  شماره 

صفحات  -

تاریخ انتشار 1990